CEE 494/CEE 598: Sustainable Energy Technologies

Fall 2013

Class-Times: Tuesdays/Thursdays 10:30-11:45 am

Location: TBD

Instructor: Prof. T. Agami Reddy (reddyta@asu.edu), ERC 479
Office Hours: Mon/Wed 9:30-11:00 am, or email for appointment

Description (approved undergraduate tech elective)
This course is a survey course focusing primarily on the scientific principles and technology pathways leading to a sustainable energy future. Topics in energy conservation and renewable energy technologies as well as the short-term role of fossil fuels and nuclear energy will be covered along with some treatment of the associated health and environmental issues as well as social and policy aspects.

Learning Outcomes
The outcomes of this course are to provide the students with better overall understanding and/or quantitative analysis skills related to:

- Energy consumption patterns in modern society: current and future, limits of growth, growth models
- Limits of non-renewable energy supplies (coal, oil, gas and nuclear) and their adverse impacts
- Fundamentals of energy science and thermodynamic cycles
- Traditional conversion technologies using fossil fuels and nuclear energy
- New concepts in electricity generation (combined cycles, combined heat and power, distributed generation)
- Renewable energy: resources, technologies, and maturity status of large scale solar and wind electricity
- Energy conservation in buildings: science, energy equipment, energy efficiency measures, green buildings
- Energy use in transportation and vehicle technologies
- Biofuels, biomass and alternative fuels
- Adverse impacts of traditional energy use on human health and the environment (ecology and climate change).

Assigned Textbook:

While not required for the course, there are several textbooks covering parts of the course material, including:

Grading Policy
ASU’s +/- grading will be used: A (93-100%), A- (90-92), B+ (87-89), B (83-86), B- (80-82), C+ (77-79), C (70-76), D (60-69), E (<60), XE (failure due to academic dishonesty).

The final grade will be assigned on the basis of the following categories and according to the indicated weights:

- Assignments 25%
- Term Project 20%
- Mid-term exam 20%
- Final exam 25%
- Attendance and participation 10%
Total 100%

Pre-requisites
Graduate students from engineering and hard sciences with the necessary background in undergraduate physics, science, mathematics, thermodynamics and fluid sciences.
Academic Integrity: Graduate students are expected to be ethical in their multiple roles as students, as researchers, as teachers and/or supervisors of undergraduate students, and as representatives of the School, Institute, and University.

Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Class Day</th>
<th>Topics (tentative)</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview: Sustainable Energy pathways</td>
<td>Sustainability concepts: Limits of growth</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Primary energy supply and consumption, nonrenewable minerals</td>
<td>Review of fluid mechanics, thermodynamic properties and laws, heat transfer</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Principles of energy science</td>
<td>Heat engines, Carnot cycle</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Coal, oil and gas resources</td>
<td>Coal power plants- Rankine cycles</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cycles: Brayton, Otto, Diesel, Sterling</td>
<td>Advanced cycles</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fossil fuel issues</td>
<td>Guest lecture</td>
<td>Nuclear power cycle and plants</td>
</tr>
<tr>
<td>7</td>
<td>Nuclear issues</td>
<td>Guest lecture</td>
<td>Electric generation and transmission, distributed generation, smart grid</td>
</tr>
<tr>
<td>8</td>
<td>Energy storage and hydrogen</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mid-term (material from weeks 1-7)</td>
<td>Renewable energy- solar energy basics</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Solar thermal systems</td>
<td>Solar photovoltaic systems</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Renewable energy- Wind+ other sources</td>
<td>Renewable energy issues</td>
<td>Guest lecture</td>
</tr>
<tr>
<td>12</td>
<td>Energy conservation principles</td>
<td>Building science and systems</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Transportation systems</td>
<td>Biofuels and alternative fuels</td>
<td>Guest lecture</td>
</tr>
<tr>
<td>14</td>
<td>Energy use impacts on humans and ecology</td>
<td>Climate change, carbon wedges and policy</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Class presentations</td>
<td>Class presentations</td>
<td></td>
</tr>
</tbody>
</table>

Final comprehensive exam