ASU and Princeton researchers collaborate on Department of Defense MURI grant investigating hyperuniformity

The world is composed of solids, liquids, gasses and plasmas: the four forms in which all matter in the universe. At high concentrations, such as in tiny groups of atoms, matter has different “condensed” states represented by different formations, like ordered crystal patterns, random patterns, and those that lie somewhere in between. One of those in-between states is called hyperuniformity, and its disordered nature contributes unique properties.

Yang Jiao, an associate professor of materials science and engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, is a co-principal investigator on a new Multidisciplinary University Research Initiative, or MURI, project funded by the U.S. Department of Defense to investigate disordered hyperuniformity and its applications. The project, “Transport in Disordered Hyperuniform Systems and Networks,” is led by Salvatore Torquato, a professor of chemistry at Princeton University.

The five-year grant of just over $6 million reflects the DOD’s investment in interdisciplinary research for areas of strategic importance. In 2022, the department has awarded $195 million to 28 research teams spanning a variety of science and engineering disciplines.

Deeper knowledge of hyperuniformity could spark innovation in the field of photonics by providing new and more effective materials to transport light. Understanding hyperuniform networks can also improve communication and transportation networks, as well as our understanding of disordered networks in general, leading to new concepts for designing networks that can adapt to disorder and be highly robust against attacks.

Read more on Full Circle.